
Logic and Discrete Structures -LDS

Course 10 – Propositional Logic

S. l. dr. ing. Cătălin Iapă

catalin.iapa@cs.upt.ro

From the last time:
Logic - general notions
Propositional Logic
Syntax
Semantics
Binary Decision Diagrams
Conjunctive normal form

Syntax of propositional logic

A language is defined by

its symbols

and the rules by which we correctly combine symbols (syntax)

Symbols of propositional logic:

sentences: usually denoted by the letters p, q, r , etc.

operators (logical connectors): negation ¬, implication → ,
parentheses ()

Propositional logic formulas: defined by structural induction

(construct complex formulas from simpler ones)

A formula is:

any proposition (also called atomic formula)

(¬α) if α is a formula
(α → β) if α and β are formulas

(α, β called subformulas)

Other logical operators (connectors)

We usually give minimal definitions (as few cases as possible)

(any further reasoning must be done on all cases)

Known operators can be defined using ¬ and →:
defα ∧ β = ¬(α → ¬β) (AND)

defα ∨ β = ¬α → β (OR)

defα ↔ β = (α → β) ∧ (β → α) (equivalence)

We skip redundant parentheses, defining operator precedence.

Order of precedence: ¬, ∧, ∨, →, ↔

The implication is associative to the right! p → q → r = p → (q → r)

The syntax does not define what a formula means. We will define the

semantics later.

Semantics of a formula: truth functions

We define rigorously how we calculate the truth value of a formula

= we give a semantics (meaning) to the formula (formula =
syntactic notion)

A truth function v assigns to any formula

 a truth value ∈ {T, F} such that:

 v (p) is defined for each atomic proposition p.

v (¬α) =
T if v (α) = F F

if v (α) = T

v (α → β) =
F if v (α) = T and v (β) = F

T otherwise

Binary decision tree

f = (a ∨ b) ∧ (a ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c)

f|a=T = T ∧T ∧(¬b ∨ c) = ¬b ∨ c

f|a=F = b ∧¬c ∧T = b ∧¬c

a

b b

c c

F T F T F T

From tree to binary decision diagram

x1

x2 x2

x3 x3 x3 x3

→

x1

x2

x3

0 10 0 0 1 0 1 0 1

binary decision tree binary decision diagram

Conjunctive normal form

Conjunctive normal form used to determine whether a formula is
satisfiable (can be T)

Def: Conjunctive normal form (a ∨ ¬b ∨ ¬d) clause

clause
= conjunction ∧ of clauses ∧ (¬a ∨ ¬b)

literal
= disjunction ∨ of literals ∧ (¬a ∨ c ∨ ¬d)
= sentance or its negation ∧ (¬a ∨ b ∨ c)

(p or ¬p)

clause
...
clause

Example: conjunctive normal form

1) we take negations inside to sentences de Morgan

2) we replace the implications from the outside when we get to them

 p → q = ¬p ∨ q

3) we take the disjunction ∨ inside the conjunction ∧

Example:

¬((a ∧ b) ∨ ((a → (b ∧ c)) → c))
= ¬(a ∧ b) ∧ ¬((a → (b ∧ c)) → c))

 = (¬a ∨ ¬b) ∧ ((a → (b ∧ c)) ∧ ¬c)
 = (¬a ∨ ¬b) ∧ (¬a ∨ (b ∧ c)) ∧ ¬c

 = (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ c) ∧ ¬c

distributivity

In today's course

How do we determine if a formula is satisfiable?

 - algorithm used in solving many problems

What is a logical proof?

The satisfiability of a formula in
propositional logic
(SAT-problem)

Proof vs logical consequence

The satisfiability of a formula in propositional logic

A formula is given in propositional logic.

Is there any truth-value assignment that makes it true?

= Is the formula satisfiable?

 (a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)

∧ (¬a ∨ c ∨ ¬d)

∧ (¬a ∨ b ∨ c)

Find an attribution that satisfies the formula?

The formula is in conjunctive normal form

Rules in determining satisfiability

We simplify the problem, knowing that we want the true formula.

(does NOT apply to simplifying formulas into equivalent formulas!)

R1) A single literal in a clause has only one useful value:

in a ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

in (a ∨ b) ∧ ¬b ∧ (¬a ∨ ¬b ∨ c)

a must be T

b must be F

(otherwise the formula has the value F)

Rules in determining satisfiability

R2a) If a literal is T, the clauses in which it appears can be deleted

(they are true, we have solved them)

R2b) If a literal is F, it can be deleted from the clauses in which it

appears (cannot make the clause true)

The previous examples simplify:

a=T
a ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) → (b ∨ c) ∧ (¬b ∨ ¬c)

b=F
(a ∨ b) ∧ ¬b ∧ (¬a ∨ ¬b ∨ c) → a

,

(and here can be a = T , so the formula is feasible)

Rules in determining satisfiability

R3) If there are no more clauses, the formula is satisfiable

(with constructed assignment)

If we get an empty clause, the formula is not satisfiable

(being emptyclause, we cannot make it T)

a=T R2a(a ∨ b) ∧ a ∧ (a ∨ ¬b ∨ c) → (T ∨ b) ∧ T ∧ (T ∨ ¬b ∨ c) →

, ,delete all clauses (contain T, we have solved them)
⇒ satisfiable formula (with a = T)

a ∧ (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

a=T→ b ∧ (¬b ∨ c) ∧ (¬b ∨ ¬c)
b=T c=T→ c ∧ ¬c → ∅(¬c becomes empty clause ⇒ not satisfiable)

Rules in determining satisfiability

a=T
What if we can't make reductions according to these rules?

a ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ ¬c)→ (b ∨ c) ∧ (¬b ∨ ¬c) ?

R4) We choose a proposition and split by cases (try):
• with value F
• with value T

A solution for any case is good (we are not looking for a specific

solution).

If no case has a solution, the formula is not satisfiable.

The satisfiability of a formula in
propositional logic
(SAT-problem)

Proof vs logical consequence

Syntax and semantics

For propositional logic, we have discussed:

Syntax: a formula has form:
proposition or (¬ formula) or (formula → formula)

Semantics: we calculate the truth value (meaning) of the formula

from the truth value (meaning) of the sentences

v (¬α) =
T if v (α) = F F

if v (α) = T

v (α → β) =
F if v (α) = T and v (β) = F T

else

Logical inferences

Inference allows us to prove a formula syntactically

(using only its structure)

It is based on a rule of inference (deduction)

A A → B
B

modus ponens

(from A and A → B we deduce (infer) B; A, B whatever formula)

and a set of axioms (formulas that can be used as premises)

A1: α → (β → α)
A2: (α → (β → γ)) → ((α → β) → (α → γ))

A3: (¬β → ¬α) → (α → β)

where α, β etc. can be replaced by any formula

*) A1 - A3 are tautologies

Deduction (demonstration)

Informally, a deduction (demonstration) is a series of
statements in which each follows from (can be derived from)
the previous ones.

Rigorously, we define:

Let H be a set of formulas (hypotheses).

A deduction (proof) from H is a string of formulas A1, A2,... , An,

for∀i ∈ [1, n]

1. Ai is an axiom, or

2. Ai is a hypothesis (a formula from H), or

3. Ai follows by modus ponens from Aj, Ak prior (j, k < i)

We say that An follows from H (it's deductible, it's a consequence).

Denoted: H ⊢ An

Example of inference (deduction)

We prove that A → A for any formula A:
(1) A → ((A → A) → A)) A1 cu α = A, β = A → A
(2) A → ((A → A) → A)) → ((A → (A → A)) → (A → A))

A2 cu α = γ = A, β = A → A

(3) (A → (A → A)) → (A → A)

(4) A → (A → A)

(5) A → A

MP(1,2)
A1 cu α = β = A

MP(3,4)

Checking a proof is a simple, mechanical process (we check the

reason given for each statement; a simple comparison of strings

of symbols).

Finding a proof is a more difficult process.

Other deduction (inference) rules

Modus ponens is sufficient to formalize propositional logic

but there are other rules of deduction that simplify the proofs

p → q ¬q
modus tollens (indirect proof)¬p

p
p ∨ q generalisation (introduction of disjunction)

p ∧
p

q
specialisation (simplification)

p ∨ q
q

¬p
eliminate (disjunctive syllogism)

p → q q → r
p → r transitivity (hypothetical syllogism)

Deduction (example)

Let H = {a, ¬b ∨ d, a → (b ∧ c), (c ∧ d) → (¬a ∨ e)}.
Show that H ⊢ e.

(1) a hypothesis, H1

hypothesis, H3

modus ponens (1, 2)
specialization (3)
eliminate (4, H2)
specialization (3)

(5) și (6)
modus ponens (7, H4)

eliminate (1, 8)

(2) a → (b ∧ c)

(3) b ∧ c

(4) b

(5) d

(6) c

(7) c ∧ d
(8) ¬a ∨ e

(9) e

Logical (semantic) consequence

Interpretation = assignment of truth to the sentences of

a formula. A formula can be true or false in an

interpretation.

Def.: A set of formulas H = {H1, . . . , Hn} implies a
formula C if any interpretation satisfying (the formulas in)
H satisfies C

Denoted: H ⊨ C

(C is a logical consequence/semantic consequence of the

hypotheses H)

Logical (semantic) consequence

To establish the semantic consequence we need to

interpret formulas (with truth values/functions)

⇒ we work with the semantics (meaning) of formulas

Exemple: we show that {A ∨ B, C ∨ ¬B} ⊨ A ∨ C

Case 1: v (B) = T. Then v (A ∨ B) = T and v (C ∨ ¬B) =

v (C). If v (C) = T , then v (A ∨ C) = T , so the

statement is true.

Case 2: v (B) = F. Similarly, we reduce to {A} ⊨ A ∨ C

(true).

Soundness and completeness of the rules

H ⊢ C : inference (purely syntactic, from axioms and

inference rules)

H ⊨ C : implication, semantic consequence (truth values)

Soundness:

If H is a set of formulas, and C is a formula such that H ⊢

C , then H ⊨ C

(Any theorem is valid;

any statement obtained by deduction is always true).

Soundness and completeness of the rules

H ⊢ C : inference (purely syntactic, from axioms and

inference rules)

H ⊨ C : implication, semantic consequence (truth values)

Completeness:

If H is a set of formulas, and C is a formula such that H ⊨

C , then H ⊢ C.

(Every tautology is a theorem,

any semantic consequence can be deduced from the same
hypothesis).

Soundness and completeness of the rules

H ⊢ C : inference (purely syntactic, from axioms and

inference rules)

H ⊨ C : implication, semantic consequence (truth values)

Propositional logic is sound and complete:

To prove a formula, we can show that it is valid.

To do this, we check that its negation is not

satisfiable.

Thank you!

Bibliography

The content of the course is based on the material from the
LSD course taught by Prof. Dr. Eng. Marius Minea and S.l. Dr.
Eng. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

	Slide 1: Logic and Discrete Structures -LDS
	Slide 2
	Slide 3: Syntax of propositional logic
	Slide 4: Other logical operators (connectors)
	Slide 5: Semantics of a formula: truth functions
	Slide 6: Binary decision tree
	Slide 7: From tree to binary decision diagram
	Slide 8: Conjunctive normal form
	Slide 9: Example: conjunctive normal form
	Slide 10: In today's course
	Slide 11
	Slide 12: The satisfiability of a formula in propositional logic
	Slide 13: Rules in determining satisfiability
	Slide 14: Rules in determining satisfiability
	Slide 15: Rules in determining satisfiability
	Slide 16: Rules in determining satisfiability
	Slide 17
	Slide 18: Syntax and semantics
	Slide 19: Logical inferences
	Slide 20: Deduction (demonstration)
	Slide 21: Example of inference (deduction)
	Slide 22: Other deduction (inference) rules
	Slide 23: Deduction (example)
	Slide 24: Logical (semantic) consequence
	Slide 25: Logical (semantic) consequence
	Slide 26: Soundness and completeness of the rules
	Slide 27: Soundness and completeness of the rules
	Slide 28: Soundness and completeness of the rules
	Slide 29
	Slide 30: Bibliography

